Archive for August, 2014

Does training induce long term muscle damage?

August 31, 2014

A glance down the list of single-age world records for the marathon reveals that a few names occur on more than one occasion. In those instances the same name always occurs within a span of a few years, apart from the instance of Ed Whitlock whose name appears 11 times, but even these 11 appearances are clustered within the past 15 years. This pattern demonstrates that it is difficult to remain at the top for more than a few years, and suggests that the stress of training and racing required to get to the top might produce damage that limits the tenure at the top .

This proposal becomes even more plausible in light of the evidence that heavy training can produce a long lasting over-training syndrome, and also the controversial evidence regarding the reversed-J shaped relationship between training load and health outcomes, such that moderate training load enhances health but very heavy training might damage health.

 

The fatigued athlete myopathic syndrome

One variant of the over-training syndrome is the fatigued athlete myopathic syndrome, in which it appears that muscles have a limited capacity to recover from exercise. Although the pathophysiology of this condition remains enigmatic, one thought-provoking feature is the abnormal shortening of DNA telomeres in muscle reported by Collins and colleagues from Capetown. Telomeres are DNA caps at the end of chromosomes. They become shorter following the cell division that occurs across the life-span in order to replace worn-out tissue,  This implies that there is a limit to the number of cell divisions that can occur during a lifetime. The shortening of telomeres is regarded as a marker of the aging process. In muscle, repairing the short term damage induced by training, especially the disruption of muscle fibres produced by the eccentric contraction at foot-strike, is dependent of the division of satellite cells, a type of stem cell unique to muscle. The observation by Collins of shorter satellite cell telomeres in biopsies from the vastus lateralis muscle in athletes suffering from the fatigued athlete myopathic syndrome, compared with healthy asymptomatic age- and mileage-matched control endurance athletes, suggests that the origin of the myopathic symptoms might indeed be attributable to damage produced by training and/or racing.

However, a key issue is the observation that age and mile-matched control athletes without symptoms of fatigue had suffered less shortening of their telomeres. Thus, it does appear that some athletes do suffer damage that limits their running career, but this is not a universal consequence. Kadi and Posnet report that when satellite cells are heavily recruited to regenerate skeletal muscle in athletes, telomere length is either dramatically shortened or maintained, possibly even longer than in non-trained individuals.   What are the factors determining whether or not training results in abnormally shortened telomeres? The answer is unknown.

 

What about the telomeres of elite masters marathoners?

It is unlikely that the seven elite masters marathoners discussed in my two previous blog posts suffered excessive shortening of their telomeres, and even plausible that they maintained longer telomeres that the average non-trained individual. This is mere speculation, but the existence of a mechanism by which some, but not all, athletes suffer sustained muscle damage adds plausibility to the proposal that these seven athletes suffered less sustained training-induced muscle damage than the average athlete, contributing not only to their phenomenal marathon performances but also to their impressive 1500m times.

If so, was their resistance to sustained damage due to their natural predisposition to longevity or might it be attributed to their training schedules? As the seven followed a variety of different training schedules, it is unlikely that the type of training schedule was a major influence. Nonetheless, in my previous post, I discussed the evidence that the two who followed the most markedly polarised programs with a large amount of easy paced running and a small proportion of fast running (Ӧstbye and Whitlock), exhibited greater longevity at the top of the world rankings than the two who appear to have included a greater amount of training at tempo pace or faster (Turnbull and Hosaka).   But it should be noted that Hosaka is still only 65 and might yet upset this observation.

 

Conclusion

Overall, it is plausible that long term muscle damage induced by training does limit the running careers of some but not all athletes. It is likely that a natural predisposition to longevity helps protect against the damage. However, the training of elite masters marathoners provides a thought-provoking hint that a polarised program that minimises the stress associated with a large training volume might be the most effective way to train in order to achieve longevity of one’s maximal level of performance.

Lessons from enduring masters marathoners

August 30, 2014

In my post on August 26th I summarised the running careers and training of the seven elite marathoners who had set world masters marathon records at age 60 or greater and had remained high in the masters marathon rankings for over a decade. These seven enduring elite marathoners, John Gilmour, Eric Ӧstbye, John Keston, Derek Turnbull, Luciano Acquarone, Ed Whitlock and Yoshhisa Hosaka, shared several features. Apart from John Keston who had only began running at age 55, all had shown signs of athletic talent in their youth, but none were of international class at that stage. The primary feature that made them world champions was a reduced rate of decline in early middle age. Furthermore, apart from Erik Ӧstbye who rarely ran on the track, all maintained their speed, recording international level times for 1500m during middle age.  

However, while all seven trained consistently and raced with determination, they employed a range of quite different types of training, suggesting that their enduring success owed more to their natural predisposition to longevity than to the type of training they did. At first sight, it might seem that there is little that a less gifted runner might learn about how to train from these exceptional individuals.  

I do not think that is the case. On closer inspection, examination of the differences in the training of these elite athletes in the light of what fifty years of research has taught us about the physiology of training provides potentially useful pointers towards the most effective training strategies for minimising decline in performance during middle and old age.

The crucial limit imposed by aerobic capacity.

If we are to run our fastest possible marathon we need to train many different physiological capacities. These include the ability to conserve glucose so that our supply of easily accessible fuel does not run our before the end of the race; the ability to metabolise lactate so that we can maintain a metabolic rate at a little above 80% of our aerobic capacity (VO2max) for several hours without continual accumulation of acid in our blood; the ability of leg muscles to stand the pounding produced by more than 30,000 foot-strikes; we need to maximise our VO2max; and several other attributes such as an efficient running style. Maximising VO2max in itself requires maximization of several trainable physiological attributes, including aerobic enzymes in mitochondria; capillary blood supply to muscles; and cardiac stroke volume.   Among all these trainable capacities, VO2max is especially noteworthy because it plays a crucial limiting role.

One of the important contributions of the great coach, Jack Daniels, to running science, is the realization to there is a quality, VDOT, which is a measure of aerobic capacity and corresponds approximately to VO2max, that provides a fairly accurate prediction of a runner’s best performance at any distance in the range 1500m to marathon. The rationale underlying the prediction is based on the assumption that aerobic capacity, quantified by the value of VDOT, is the limiting factor that determines performance across the range of distances.   This assumption is controversial. An alternative view is that performance is limited by a ‘central governor’ in the brain that acts to protect us from harm. In fact the apparently competing claims for the role of aerobic capacity and the central governor as the factor limiting performance can be reconciled, but that is a story for another blog post. In practice, predictions based on VDOT are usually fairly accurate for well-trained runners. If a runner is adequately trained at 1500m, performance at 1500m provides good estimate of aerobic capacity as quantified by VDOT, and in turn this value of VDOT can be used to predict marathon performance, provided the runner is adequately trained for the marathon.

The implication of this is that any consistent training program can maximise all the other factors such as ability to conserve glucose; ability to metabolise lactate; and the ability of leg muscles to stand the repeated pounding, so that the limit is set by aerobic capacity. This does not mean that these other factor do not play an essential role in performance. It simply indicates that these factors can be trained to the level where they are no longer the limiting factor.   Aerobic capacity itself can also be trained but it remains the limiting factor.

Was aerobic capacity the limiting factor for the elite masters marathoners?

What relevance does the limiting role of aerobic capacity have to understanding the phenomenal success of the seven elite masters marathoners? The first question to ask is does Daniel’s VDOT formula work for them? Because it is reasonable to assume that they were adequately trained for the marathon distance, it is appropriate to ask how well their marathon performance predicted their performance at 1500m.

Marathon times and 1500m times recorded on occasions no more than approximately a year apart are available for all of the seven of elite elderly marathoners apart from Erik Ӧstbye, who rarely raced on the track. Table 1 lists age, marathon time, estimated VDOT based on marathon time, 15000m time predicted from VDOT; actual 1500m time recorded on a race; and percentage error of the estimate. It can be seen that the percentage error is typically around 1-2% and never exceeds 2.5%. Granted that race performance on any one occasion might differ from maximal by a few percent, it appears that for these six athletes, their performance across distances from 1500m to marathon was determined largely by their aerobic capacity. The conclusion receives further support for the observation that in the case of Ed Whitlock for whom we have a measured value of VO2max less than a year before the marathon I have used to estimate his VDOT, the estimated VDOT of 52.9 ml/min/Kg is within a tenth of a percentage point the measured VO2max of 52.8 ml/min/Kg.

Comparison of actual 1500m times with predicted times based on VDOT estimated from marathon time

Comparison of actual 1500m times with predicted times based on VDOT estimated from marathon time

The data suggests that other factors might have contributed a percentage point or two to the performances of the six elite athletes. While a percentage point or two might matter in a race, it is merely the icing on the cake when it comes to understanding why these elite athletes stood head and shoulders above average athletes of similar age.  Thus the crucial question in understanding what made these athletes elite is the question of what endowed them with values of VO2max about twice the values expected for the average man of similar age.

What determines aerobic capacity?

Aerobic capacity is trainable, but it is also shaped by genetic factors.   As I previously discussed (2nd August) in the case of Ed Whitlock, I think it is likely that his very high maximum heart rate contributed appreciably to his extraordinary VO2max. Maximum heart rate appears to be largely determined by genetic factors. Those of us with lesser genetic endowment have little hope of matching Ed’s performances. However, if we accept that consistent training can optimise the factors other than VO2max such that these other factors are no longer limiting, if we wish to maximise our distance running performance in middle age and sustain that level of performance (relative to WAVA norms) into old age, the major question is how can we maximise our aerobic capacity and how can we sustain a maximal value over a prolonged period?

To address these questions we can draw on several different strands of evidence. Two of the most important strands of evidence are the body of evidence regarding the nature of overtraining and the evidence regarding polarised training.

Over-training

I have reviewed the evidence regarding over-training including the role of cortisol on several occasions previously (e.g. here and here). In summary, effective training achieves it benefit by stressing the body in a way that elicits an anabolic state that strengthens the body so that it can withstand similar stress more effectively in future.  However if there is inadequate recovery, there is sustained elevation of the stress hormone, cortisol, that obstructs the anabolic phase, while also creating a risk of chronic inflammation which promotes the replacement of healthy tissue by fibrous tissue.

Polarized training

The evidence regarding the relative merits of high volume training compared with high intensity training (reviewed in my post of 31st March) indicates that high volume and high intensity training are each effective in increasing aerobic capacity. However, accumulating evidence indicates that polarised training, consisting of a large volume of easy running and a small amount of high intensity running, produces the greatest increases in aerobic capacity in athletes who have already achieved a plateau of fitness, and offers the best prospect of long term improvement, year upon year.

A closer look at the training of the elite elderly marathoners

Bearing in mind the necessity for avoiding over-training via adequate recovery, and the evidence indicating that polarised training offers the best prospect of year on year improvement, it is worth a closer look at the training of the seven elite ancient marathoners.

It is noteworthy that two, Ed Whitlock and Erik Ӧstbye, adopted a markedly polarised program consisting of a very large amount of easy running together with a quite small amount of intense running, mainly in the form of shorter distance races, over a sustained period of years. It is also important to note that Whitlock emphasizes the importance of building up the volume of his training very gradually, and on minimising impact stress on his legs during his long runs. Ӧstbye set world marathon records in the age bands 40-50; 50-55; 55-60 and 60-65, and remained high in the rankings until age 70. Whitlock has dominated the world masters marathon rankings for the past 15 years, and holds the current single-age world records for 11 of those 15 years.

In contrast, Yoshihisa Hosaka has adopted a program that includes a higher proportion of running at marathon pace or faster. During his twice daily interval sessions he runs approximately 10 Km per day at marathon pace or faster. As might be expected, his quite demanding program has led to very impressive performances up to age 60. As discussed in more detail in my post of 18th August, over the period from age 45 to 60 his performances declined at about half the rate expected during that age period. However, since age 60 his performances have declined at a rate about 70% faster than expected on the basis of WAVA predictions (as illustrated in figure 1). It would be unwise to draw any definite conclusions this stage. It will be very interesting to see how he fares in his ambitious quest to capture Derek Turnbull’s M65-70 record in the Waterfront Marathon in Toronto this November. However, as reported in his interview with Brett Larner at the time of last year’s Waterfront Marathon, he is finding it increasingly hard to manage his demanding training and might even consider changing to switch to a program more like that of Ed Whitlock.

Figure 1: The decline in marathon performance of Whitlock, Turnbull and Hosaka.  Apart from a minor ‘stutter’ at age 70, Whitlock did not exhibit marked decline until age 80; Turnbull exhibited a similarly marked decline in his late 60’s ; Hosaka shows a trend towards an even earlier decline. The data point at age 64 represents his time in the 2013 Gold Coast marathon.

Figure 1: The decline in marathon performance of Whitlock, Turnbull and Hosaka. Apart from a minor ‘stutter’ at age 70, Whitlock did not exhibit marked decline until age near to 80; Turnbull exhibited a marked decline in his late 60’s ; Hosaka shows a trend towards an even earlier decline. The data point at age 64 represents his time in the 2013 Gold Coast marathon.

John Keston trained with fierce determination and great success from his later 50’s until age 70. In 1994, it appeared likely he would become he first 70 year old to run a marathon in less than three hours. However, despite running 20 marathons in the year, he failed to achieve his target. He almost achieved the three hour mark a year later, but then sadly suffered a series of accidents and injuries. After his return he adopted a training program based on about 2 hours of running every third day with a similar period spent walking (often in woodland) on each of the intervening days. Though he never quite recovered his former dominance, he nonetheless continued to perform at very high level for another decade. At age 82 his marathon time was 6th in the all-time rankings for the M80-85 category at that time.    

It is more difficult to draw conclusions concerning Luciano Acquarone, Derek Turnbull and John Glimour due to lack of detailed information about their training. John Gilmour experienced more than a life-time’s worth of stress during his three years as a prisoner of war, and as far as I can gather, did quite a lot of demanding tempo running during his training. His training can scarcely be described as polarised. He remained near the top of the world rankings over a 12 year period from age 59 to 71, and continued to run for a further two decades, even in his 90’s still running 5Km per day. He certainly qualifies as an enduring elite marathoner but his time at the top of the rankings scarcely matches that of Ed Whitlock who shows no sign of relinquishing that position after 15 years.

Derek Turnbull did not follow a planned training program, but his spontaneously selected paces were often quite fast. In his obituary, Roger Robinson described Turnbull’s training as a perfect balance of long runs, tempo, and fast work. Almost certainly this ‘balance’ included substantially more tempo training than a polarised program. Of the seven elite marathoners we have discussed, Turnbull had the shortest time at the top of the rankings, a period extending from his world record for the M60-65 category set at age 60 to his time 3:15 at 70, which at the time was 13th in the rankings. As shown in figure 1, the decline in his performance in his late 60’s was marked.

Conclusions

Thus, despite the fact that all seven of these elite elderly marathoners were superb runners, when one looks in detail at the differences in their training programs, the available evidence indicates that those who adopted a more polarised training regimen, with a large amount of easy running and a small proportion of intense running, achieved greater longevity at the top.  

In a small sample of exceptional individuals it is of course possible that other differences, possibly directly associated with their natural predisposition to longevity, accounted for the observed longer duration at the top of the rankings. However, one fragment of evidence provides intriguing support for the claim that the training regimen made a crucial the difference. Ed Whitlock’s progress did stutter slightly at age 70. His times of 2:51:02 and 2:52: 50 recorded in the Columbus Ohio marathon at age 68 and 69 respectively made it appear highly probable that he would become the first to break 3 hours at age 70. He did not manage it that year. Nonetheless, despite some problems with arthritis, he continued to build up the frequency of daily 3 hour runs in the following two years. At age 73, after doing 67 three hour training runs in the preceding 20 weeks, he ran the Toronto Waterfront Marathon in 2:54:49, surely the most impressive marathon time ever recorded by a masters athlete, and one might argue, no less impressive than the 2:03:23 recorded by the current world open record holder, Wilson Kipsang.

There is another point that should be re-emphasized. Although the striking feature of Ed’s training was the daily 3 hour runs, he did also do some fartlek style speed work, and raced frequently over shorter distances. I suspect that this small but significant amount of faster running helped maintain his world class performances over 1500m and in particular ensured that 1500m time in at age 73 showed only a 1 second decrement from performance at age 72, whereas WAVA would have predicted a 5 second decrement over the year. As shown in table 1, for all six of the athletes for whom 1500m times are available, the comparison of actual 1500m time with the prediction based on VDOT calculated from their marathon times demonstrates that all maintained their speed over the shorter distances. All six did at least a small amount of faster running during training. Thus, it is likely that at least a small amount of intense running was an important component of their training.

It should also be emphasized that drawing general conclusions from the experiences of a small number of exceptional individuals is fraught with danger. If Hosaka can arrest his recent decline while continuing the twice daily interval training he did in his early 60’s, it will be necessary to re-appraise my current conclusions. But the evidence so far does confirm what would be expected on the basis of the studies of training physiology performed in samples more representative of typical runners, over the past half century. The key lesson is that a large amount of easy running together with a small amount of faster running is the best strategy for sustained optimal performance. Furthermore, avoidance of cumulative stress is essential. Ed Whitlock’s example suggests that this is best achieved by very gradual build-up of the training volume.

In my post of August 26th I mentioned Tim Noakes’ hypothesis that an athlete can only expect to remain at his/her peak (relative to the WAVA age norms) for a few years on account of the damaging effect of the training and racing required to attain one’s peak . Although the seven individuals we have been considering are clearly exceptions to any such rule, they do offer interesting insights into the limits to the validity of the hypothesis. In my next post I will examine the evidence for and against that hypothesis.

The secrets of the enduring ancient marathoners

August 26, 2014

There are seven elite ancient marathoners who have set a marathon age-group world record at age 60 or greater, and in addition, have recorded times ranked within the top 15 in their current age band on multiple occasions spanning more than a decade. These seven elite marathoners with extraordinary staying power are John Gilmour, Eric Ӧstbye, John Keston, Derek Turnbull, Luciano Acquarone, Ed Whitlock and Yoshihisa Hosaka.

John Gilmour (born 1919)

John Gilmour migrated from Scotland to Australia during childhood. He was a keen athlete in his teens but at the outbreak of the war enlisted in the army and became a prisoner of war when the Japanese over-ran Singapore in 1942. He was imprisoned in the notorious Changi prison and subsequently shipped to Japan where he experienced further extreme privation. He suffered permanent loss of much of the sight of both eyes due to malnutrition. His pièce de résistance as a slave labourer was destroying a major Tokyo Steel furnace by contriving to have a heavy naval shell loaded into it. He sustained his spirits with the hope of future athletic achievement and within a year of his return home represented Western Australia in national championships. However, his most memorable performances were achieved in international masters events ranging from 800m to marathon over a 20 year period from his early 50’s to age 70. At age 59 he ran a marathon in 2:38:19. Three years later he set a world M60-65 record of 2:41:07 and subsequently in Perth in 1989 he set a M70-75 world record of 3:03:04. He continued to race and to coach until in his mid-eighties.

His training and racing were characterised by intense determination grounded on the conviction that if he could survive his experiences as a POW he would not be deterred by the challenges of running. His training and coaching repertoire included demanding tempo sessions, though in all spheres he showed generosity of spirit and humility. In the forward of Gilmour’s biography, Robert de Castella wrote: ‘… this book celebrates his achievements and gives us an opportunity to understand how champions can be ordinary people doing the extraordinary.’

Eric Ӧstbye ( 1921 – 2011)

Ӧstbye was born on Norway but moved to Sweden. He dominated Swedish road racing in the late 1950’s and 1960’s, but rarely ran on the track. He set his first age group world marathon record in the 45-50 category at age 47 and subsequently set records in the 50-55; 55-60 and 60-65 categories. Even at age 70 his time of 3:15:57 placed him 10th on the world ‘all time’ list at that time.

In 1968, he was not included in the Swedish team for the Mexico Olympics because he was considered too old at age 47, despite a best time of 2:20:55 that year. It is interesting to note that Mamo Wolde won the Olympic gold with a time of 2:20:26, though the altitude of Mexico City (2250m) must be borne in mind. Ostbye trained according to the principles of Ernst van Aaken. The key feature was daily long slow runs of 30 Km or more, in the low aerobic range, augmented by only a small amount of fast running.   He was also a dedicated vegetarian.

John Keston (born 1924)

Keston is an English actor and singer who travelled to Washington, and thence to Broadway, with the Royal Shakespeare Company in a touring production of the play, Sherlock Holmes, at age 50. He decided to remain in the US.  At age 55 he took up running to overcome high blood pressure. After doing well in some ‘fun runs’ he began to take running more seriously, and at age 64 achieved his fastest marathon time of 2:52:32. He trained with tigerish ferocity, typically doing sessions such as 20x400m. He set his sights on being the first 70 year old to break 3 hours, and with typical determination he raced 20 marathons that year, without achieving his goal. He subsequently accepted ironically that his determination exceeded his sense. He did break Warren Utes’s half-marathon world record with a time of 1:25:36, and the following year he broke Utes’s M70-74 marathon record with a time 3:00:58.  

Then at age 73 he suffered the first of three serious accidents that might have persuaded a less determined man to give up. First, he broke his hip in a bike accident. Then, sixteen months later he broke his left leg when he slipped and fell in icy snow, and a further ten months later, he stubbed his toe on a rock while running seriously injuring his foot and tearing tendons. He resumed running, but perhaps fortunately, guided by his son’s advice he decreased the intensity of training. Similarly to Eric Ӧstbye and Ed Whitlock, he subsequently trained mostly at low intensity for several hours per day, though at an even lower intensity with about half of the distance covered walking in woodland. He loved the outdoors; the sun, the wind and the rain. Typically, he ran for about two hours every third day, and walked for a similar time on each of the intervening two days.   His race times slowed but nonetheless at age 76 he set US national records at 5K and 10K, and he ran a 1500m in 5:47. The following year his marathon time of 3: 19:01 was only about a minute outside Warren Ute’s M75-80 world record, and 5 years later at age 82 his marathon time was 6th in the all-time rankings for the M80-85 category at that time.    

Derek Turnbull (1926-2006)

Derek Turnbull was a New Zealand sheep farmer who dominated the world of veteran distance running from 1977 to 1992. He had been an enthusiastic runner since his teen-age. Despite subsequently down-playing the athletic achievements of his younger days, he had run a half mile in little over 2 minutes, a mile in 4:23, and achieved fourth places in New Zealand three- and six-miles national championships on several occasions. At university, he was awarded an athletics Blue. The tradition of awarding Blues to mark sporting achievement had originated in Oxford and Cambridge, and had been taken up, perhaps with slight tongue-in-cheek enthusiasm, in some antipodean universities. I am wryly amused by the fact that the only surviving tangible memento of my own early athletic achievements is the venerable document recording the Blue awarded to me by Flinders University. My mother had it framed and I have never had the heart to throw it away. But even if in retrospect, a Blue might be seen as a peculiar mark of respect for the venerable universities of the ‘mother country’, it provides me with a tenuous link to Turnbull, while also illustrating that his athletic gifts were recognised when he was a young man.

However, the thing that makes him a world-class athlete was the fact that nearly four decades later at age 60 he broke the M60-65 world marathon record with a time of 2:38:47, in my home town, Adelaide. Five years later, in 1992, he established a M65-70 world marathon record with a time 2:41:57 in London. That record still stands, and is the prize that Yoshihisa Hosaka is aiming to take in Toronto in November this year   In the intervening years,Turnbull ran an 800m in 2:14.53, a 1500m in 4:28.00 at age 62.   He continued to run after suffering a stroke in 2001 but sadly died in 2006 at age 79. Like his countryman, Jack Foster, Turnbull did not follow any specified training plan, but ran across the fields and through the forests on his property, Sherwood farm, as the whim took him. Nonetheless, his whims often dictated a fast pace, and it is probable that his training included a good mixture of easy and fast running. In an obituary published in Running Times in February 2007, Roger Robinson stated that ‘a visit to Sherwood Farm revealed that running how Derek felt in fact produced a perfectly balanced program of long runs, tempo, and fast work’.

Luciano Acquarone (born 1930)

In his youth, Luciano Acquarone focussed on middle distance events, enjoying success at regional level in his native Italy. In his early forties he turned his attention to the marathon, achieving a time of 2:20:21 at age 42, while also continuing to perform well at 5,000m and 10,000m. In his late forties he suffered tendonitis requiring surgery, but then his career blossomed on the world stage in his early 50’s. He set a world 50-55 age group record of 30:05 for the 10000m record in 1981. That year he ran a marathon in 2:28:28, placing him 5th on the world ‘all-time’ list of 50-55 year old marathoners. He continued to flourish, setting a M60-65 world marathon record of 2:38:15 at Turku in 1991, in addition to capturing the M60-65 10,000m world record. Over the subsequent 15 years he continued to post times in the marathon and also at shorter distances that placed him high in the world rankings.  Again at age 75 he achieved another age group world marathon record with a time of 3:10:57.    At 81 he set a European half marathon record and the following years a M80-85 world record at 3000m. Thus Acquarone has performed at elite level as a veteran over a period of 40 years, and has set world records spanning distances from 3000m to marathon, spread over a three decades. It is ironic that, apparently on the basis of a superficial examination of the data, Ross Tucker selected Acquarone to illustrate his proposition that most elite veterans appear at the top of the world ranking for only a brief few years, in support of Tim Noakes’ hypothesis that training and racing at elite level damages the legs. We will return to address that interesting hypothesis subsequently.

Ed Whitlock (born 1931)

I discussed Ed Whitlock and his training in detail my post of August 2nd. Here I will summarise only those features that are especially relevant to the topic of this post and the next.   As a school boy he showed promise of athletic talent, running a mile in 4:31 and notably beating the future world champion distance runner, Gordon Pirie in a cross country race. Unfortunately, an Achilles tendon injury at university contributed to his decision to stop running, and lack of opportunity for racing after he moved to Canada to take up a job as a mining engineer consolidated that decision. He began running again in his forties, focussing mainly track racing with a strong determination to win. His training placed a strong emphasis on demanding interval sessions. At age 48 he ran his best marathon in 2:31:23 after a winter of solid high-volume training and later that year won gold in the 1500m at the M45-49 masters world championships in Hannover with a time of 4:09.

But his greatest achievements as a marathoner came after he shifted to a training program in which the key feature was daily long runs at a very easy pace, spiced up with occasional fartlek-style speed work and frequent races. In the four years from his impressive time of 2:52:02: in the Columbus Ohio marathon, in 1999 at age 68 to his awe-inspiring 2:54:49 at age 73 in the Toronto Waterfront marathon in 2004, he gradually increased the frequency of 3 hour runs.   In the 20 weeks prior to the 2004 Waterfront he did 67 three hour runs, including 18 on consecutive days. Contrary to the almost inevitable year on year decline observed even among elite elderly marathoners, he actually ran faster at 73 than during the Waterfront Marathon the previous year when he became the first man to run a marathon under 3 hours with a time of 2:59:10. It is also noteworthy that his best 1500m time of 5:08,6 at age 73 was less than a second slower than his best at age 72, whereas an increase of about 5 seconds over a year would be expected. Thus, the increased amount of slow running did not harm his speed. He has continued to set world records distances ranging from 3000m to the marathon, including setting the M80-85 marathon world record with a time of 3:15:54 in 2011.

Yoshihisa Hosaka (born 1949)

I discussed the running career of Yoshihisa Hosaka in my post of August 18th and will only give a brief summary here. He was a champion runner at school but during his twenties he focussed on surfing, only returning to running at age 36. Initial success at shorter road races led him eventually to the marathon. He achieved a personal best of 2:25:28 at age 45 and after further refining his training program, set the M60-65 world record with a time of 2:36:30 at the Beppu-Oita Marathon in 2009. As he described in an interview with Brett Larner, his training at that time was based on 5x1Km twice daily at a gradually progressive pace within a total of 32 Km per day.   In the following three years he continued to race well , capturing the M61 and M63 single-age world records, though his marathon time increased at a rate of over 3 minute per year compared with an expected slowing of about 2 minutes per year for an elite runner in his early 60’s. In last year’s Gold Coast marathon he narrowly failed to capture Clive Davies M64 single-age record of 2:42:44 and this year faces the major challenge of capturing Derek Turnbull’s M65-70 record of 2:41:57.  

What do these ancient marathoners share?

First, with the exception of John Keston, all showed evidence of at least a moderate athletic talent in young adult life, but none were of international class at that stage. Gilmour represented his state in national championships in his twenties, within a year of his return for prisoner of war camp; Ӧstbye began to dominate Swedish road racing in his thirties; Turnbull won an athletic Blue at university; Acqualone was a successful middle distance runner at regional level in his twenties; Whitlock famously beat Gordon Pirie in a cross country race as a school boy; and Hosaka was a school-boy champion. Although Keston did not start running until age 55, his immediate success in fun runs made it apparent that he too was gifted.

However the thing that made all seven of these runners great were their performances in their 50’s, 60s, and 70’s and in several instances, in their 80’s.   Their great performances were not confined to the marathon. With the exception of Eric Ӧstbye who rarely ran on the track, all of them have been listed in world masters rankings for 1500m, and several of them set national or world records at 10,000m.  

Thus, even more important than their talent for distance running as young men, was the fact that their performances declined with age at a much slower rate than the average person. This reduced rate of decline applied across the spectrum from 1500m to marathon. Nonetheless, despite a reduced rate of decline from young adult life to middle age, they did all decline. Data from the Master Athletics track and field world rankings indicates that this rate became fairly uniform by the middle years of the seventh decade. At that stage, the rate of their slowing was around 1.5% per year for both marathon and 1500m.

The degree of commonality in these features across all seven athletes suggests at first sight that the type of training did not play a crucial role. All undoubtedly trained consistently and with determination, but the content of their training sessions differed substantially. Ӧstbye, Whitlock and Keston (in his later years) did a high volume of easy running with a small amount of faster training and/or racing over short distances. Turnbull was deliberately more spontaneous in his training but appears to have included a reasonably balanced mixture of training paces. As far as I can gather from the information available to me, Gilmour and Acqualone also included a balanced a mixture of paces. The central feature of Hosaka’s training is 5x1Km intervals twice daily at a gradually progressive pace, within an overall total of 32 Km per day.  

Presented in such broad brush strokes as this it is difficult to reach any conclusion about training other than that a variety of different training programs can lead to success, provided the athlete has a degree of natural talent for running together with a predisposition to age slowly, and the training is consistent. However, I think that a finer grained analysis does allow us to draw some speculative but potentially useful conclusions about how to train, whatever the level of one’s natural talent.

There is a related question that arises from the hypothesis that an athlete can only expect to remain at his/her peak (relative to the WAVA age norms) for a limited number of years on account of the damaging effect of the training and racing required to attain one’s peak. These seven ancient marathoners were selected for this discussion on account of their longevity in the world marathon rankings, and hence do not provide an unbiased sample in which to test that hypothesis. Nonetheless, because they tend to be exceptions to the rule, they do offer interesting insights into the limits to the validity of the hypothesis. Furthermore, a finer grained analysis of features of the training of some of these seven marathoners does provide some clues regarding the way one might train to remain near to one’s peak for longer.

In my next post, I will examine a few of the finer details of the training of these seven athletes that proved pointers toward how to achieve one’s best in middle-age, and how to sustain that peak relative to WAVA age norms into old-age.

The training of Yoshihisa Hosaka

August 18, 2014

At high school Yoshihisa Hosaka was a champion track athlete. After several years devoted to surfing, he began running again in his mid-thirties, focussing on short road races, but did not seriously contemplate the marathon. At age 42 he won a 7 Km race that earned him a trip to compete in the Honolulu marathon.  He completed it in 2:31:19. In an interview with Brett Larner, editor of Japan Running News, in 2009, he described the way in which he developed his training over the next few years, achieving a marathon personal best time of 2:25:28 at age 45, an impressive performance but appreciably slower than the time of 2:20:28 achieved by Jack Foster at age 50, and well outside the world M45+ record of 2:14:16 set by Jackson Kipngok Yegon of Kenya. Hosaka continued to develop his training and settled on a consistent routine of two sessions daily, both including 5x1Km intervals within a daily total of 32Km. In February 2009 at age 60 he took nearly two minutes of the world M60+ record with a time of 2:36:30 at the Beppu-Oita Marathon.

His best performance in the past 15 months was 2:46:14 at the Gold Coast Airport Marathon in July 2013 at age 64, though this was over three minutes outside Clive Davies’ single-age world record for a 64 year old of 2:42:44 set in 1979. At the Toronto Waterfront marathon last November Hosaka started well but his leg muscles tightened-up during the middle stages of the race and he finished in 2:50:44. At the Gold Coast marathon this year, he won the M65-69 age group in a time of 2:52:13. But he still has his eyes on breaking Derek Turnbull’s M65+ world record of 2:41:57 in Toronto in November.

Hosaka’s peak performance deteriorated by 11 minutes in the 15 years from his personal best at age 45 to his world M60+ at age 60, and by almost 10 minutes in the 4 years from age 60 to his 2013 Gold Coast marathon at age 64. According to WAVA, the deterioration expected for a runner at the highest level would be 20 minutes from age 45 to 60, and 6 minutes 15 seconds from age 60 to 64. Thus, Hosaka deteriorated at only half of the rate predicted by WAVA between his PB at age 45 and his world record at 60 but he has deteriorated at almost 70% more than WAVA would predict from age 60 to his best performance within the past 15 months. One should not base too much on his recent races slower than 2:50 in Toronto in November 2013 and the Gold Coast in July 2014, as the marathon is an unpredictable event in which sub- peak performances are not usual, Nonetheless these two races do provide a further hint at the possibility of a more rapid deterioration in his mid-sixties.

To what extent has his training contributed to his outstanding improvement relative to WAVA prediction in the period from 45 to 60, and might this training have actually led to a faster deterioration than that predicted by WAVA in the years since age 60?

Hosaka’s Training

In the interview with Brett Larner, shortly after he had set the M60+ world record in 2009, Hosaka provided a detailed account of his unvarying daily schedule. The morning session begins with a 1.5 mile jog through mountainous country from his home to a tree-lined riverbank path where he does five 1Km repetitions at a gradually increasing pace, starting at a relaxed 6:25 /mile (about 25 sec/mile slower than his marathon pace at that time) and increasing pace to 5:20 /mile, which is the estimated 10K pace for a 2:36:30 marathoner. In isolation, this would be quite an easy session, gently progressing from a relaxed initial pace to the fifth Km repetition at around 10K pace. He jogs home, and works in his own business from 8:30am to 5:00pm. After work, he drives to a park where he does some strength exercises and then a progressive 12Km warm-up starting at 9:30/mile and increasing pace up to 8 minutes mile. He then does another 5x1Km interval session on a long downhill stretch of a nearby road. He does the first 1Km at marathon pace and gradually increases to estimated 10 Km pace for the final repetition. He finishes with 5 x 100m accelerations on soft earth in the park, to help maintain his speed. In isolation, this session would also be fairly easy, though the day’s total of 32 Km is substantial, and the cumulative effect of repeating this day after day would be appreciable. He races quite frequently, and usually races at least two marathons per year

The key features of Hosaka’s programme

  • The unvarying daily schedule of two sessions, each of which would be only moderately demanding in isolation, allows him to monitor how well his body is coping with the training much more effectively than a program that alternates hard and easy days.   In similar manner, Ed Whitlock, whom I discussed in my previous post, follows a consistent program of daily long runs, though Hosaka’s schedule provides greater variety within each day. While the human mind craves variety, the body adapts very well to a routine. I consider that the doctrine that the body needs fresh challenges in order to improve is over-rated. Consistency is of greater importance, though it is probable that the best results are obtained when demands of training increase gradually over a long period. Frequent racing also adds spice.

There are two occasions in my own running career when I did daily doubles with very little variation over a period of many months. The first was as a youngster when I ran to and from school at a comfortable pace each day for several years. I did not find this irksome, and believe that it laid the foundation for what success I later enjoyed as a distance runner. Then in my early twenties, I ran 10 miles twice daily for several months, guided by a fragmentary knowledge of Lydiard’s recommendation of running at least 100 miles per week. I ran at what I assumed Lydiard meant by a ‘good aerobic pace’ though I ran many of those miles not far below the second ventilatory threshold, which was probably somewhat faster than Lydiard would have recommended. Again I did not find the routine irksome, though at the time I was working very long hours and eventually became increasingly tired. Nonetheless, in the following summer season I ran the best 5000m races of my career and also achieved a memorable victory in the only 10,000m I have ever raced.

  • Both of Hosaka’s daily sessions were gently progressive. Although he ran about 10 Km per day at marathon pace or faster, these moderately effortful segments were only 1 Km in length, and in the evening session, they were downhill. He did not do sustained tempo sessions – which evidence indicates are disproportionality stressful. He himself reports that he finds his body copes better with interval sessions in which the demand for effort comes in small chunks, than with sustained running near lactate threshold. In the interview with Brett Larner he stated: “Most people can’t keep race pace up for a long time as they get older. Doing it in intervals lets you keep your speed without getting hurt.”
  • Perhaps the most surprising aspect of his training is the absence of long runs. However, as indicated by Dudley’s well-known studies of rats, there is little evidence that runs longer than 40-50 minutes are an efficient way to increase aerobic capacity. It is however probable that long runs are effective in developing the ability to withstand the sustained pounding of the legs that is inevitable during a marathon, though it is possible that downhill 1 Km repetitions at marathon pace or faster, are even more effective for developing the required resilience. The other main marathon-specific benefit of long runs is the psychological preparation. But Hosaka considers that his daily routine is well suited to the sustained mental demand of the marathon.   He told Brett Larner: “Early on it’s easy, but after a few days it’s harder and you think, ‘Ah, this is like the 30K point in the marathon,’ then it gets even harder like at 40K. Every day’s training becomes like part of the marathon. Most people run a hard day and then jog an easy day, but the marathon is constant and you have to train yourself to handle that constant.”
  • Although he is not finicky about his life-style, he eats a balanced diet and believes it’s important to let the body use its natural healing processes. He employs strength exercises and weightlifting to prevent and treat injuries. He trains in relaxing surroundings. Although his work as a businessman no doubt creates some pressure, as his own boss he has the opportunity to regulate his own stress level.

I consider that Hosaka’s preparedness to identify a training program that suited him well and enabled him to train consistently were the key features that allowed him to make substantial improvement in marathon performance between age 42 and 45, and then to slow the rate of decline over the following 15 years. In his consistency and his care to avoid undue stress, Hosaka resembles Ed Whitlock. However, while both of them have included a small amount of fast running and frequent racing to maintain their speed, in other respects the content of their programmes is dramatically different. Hosaka focusses on gradually progressive 1 Km repetitions but no long runs, whereas daily 3 hour runs at a slow pace are the key feature of Ed’s programme. Both have been phenomenally successful over a period of a decade or more, confirming that there is no single way to train in order to achieve outstanding marathon performances. Does our understanding of body physiology provide any clues as to which approach is likely to offer the greater prospect of sustained elite performance over several decades? .

Catabolism and anabolism

Training produces benefit by creating a stress that provokes the body to react in a manner that enhances the ability to withstand stress in future. The mechanism of the stress response is only partly understood, but current understanding does provide useful guidance for planning training.

The first general principle is that stress generates a two-phase response. The initial response is the catabolic phase in which the body’s priority is breaking down of tissues to supply fuel for energy production. Glycogen is broken down to release glucose and if the stress is sustained, protein is broken down into amino acids which in turn can be used as fuel. The catabolic hormones adrenaline and cortisol plays a cardinal role in regulating these metabolic processes. In addition, physical trauma, such as the eccentric muscle contraction at foot-strike, produces microscopic tearing of tissues.

After cessation of exercise, the level of adrenaline falls within minutes while the level of cortisol returns to baseline over period of an hour or two. However, a second bout of exercise within 3 hours produces an even greater surge of adrenaline and cortisol, compared with a similar second bout of exercise after 6 hours. This indicates that even after cortisol has returned to baseline, signalling molecules circulating in the bloodstream are a marker of residual stress. This sustained marker of stress diminishes markedly by 6 hours. However other markers of stress such as a fall in blood levels of lymphocytes, which play a role in protecting against infection, can persist for 24 hours.

The second phase is the anabolic phase during which tissues are repaired. Various different processes are involved. Anabolic hormones stimulate the re-synthesis of protein. A complex set of chemical messengers including various cytokines, trigger an inflammatory response. Capillaries become leaky allowing fluid containing scavenging white blood cells and materials required for repair, to reach damaged tissue. The scavenging white cells remove cellular debris, while the deposition of collagen fibres strengthens tissues. Satellite cells, which are a form of stem cell found in muscle, promote regeneration of muscle.

If there is repeated stress before recovery is complete there is a risk of a third phase. Sustained elevation of cortisol can occur, causing continued suppression of the immune system and inhibiting anabolism. Paradoxically, sustained elevation of cortisol can promote chronic inflammation by blunting the body’s response to cortisol. Chronic inflammation leads to disorganized deposition of collagen fibres in body tissues, impeding the function of these tissues. .It is even possible for collagen deposition in the walls of coronary blood vessels to promote atheroma that might eventually increase the risk of heart attack. It is noteworthy that sustained moderate elevation of cortisol is not uncommon in distance runners, and is related to both volume and intensity of training. While there is little compelling evidence that even quite intense training produces harm that outweighs the benefits of vigorous training over a period of several years, I suspect that if one wishes to train at elite level over a period of decades, it is crucial to maintain a healthy balance between catabolism and anabolism, and to avoid the potentially harmful third phase.

It is likely that training programmes that carefully avoid excessive stress, have enabled both Hosaka and Whitlock to remain at elite level for at least a decade, and in Whitlock’s case, for even longer. I see no reason to propose that Hosaka’s carefully calibrated interval sessions are more likely to produce sustained stress than Whitlock’s frequent 3 hour slow runs. However, there is one respect in which I think Whitlock’s approach is safer. Although his programme is not deliberately periodized, by virtue of various circumstances, including arthritis and accidents, he has been forced to cut back his training from time to time, and whenever he does so, he builds up the duration of his long runs very gradually. I suspect that gradual adaptation is a key feature of his success.

Future prospects

Hosaka’s own comments reported in another interview with Brett Larner in Toronto in November 2013 suggest he is considering a change. He acknowledged that he was finding it harder to maintain his daily interval sessions, and perhaps might even change to Ed Whitlock’s high volume, low intensity approach, though maybe this was simply an expression of Japanese politeness while he was a guest in Ed’s home town.

In 2013, Hosaka missed the single-age M64 world record, after capturing M59, 60, 61, 63 world records in the previous five years. It is interesting to speculate that he might be beginning to experience the accelerating deterioration that many runners experience in the mid to late sixties, but only time will tell. Whitlock had also shown slight hints of a stutter in performance for two or three years after his superb 2:52:50 in the 1999 Columbus Ohio marathon at age 69, but he came back with a tremendous improvement to achieve 2:54:48 in Toronto at age 73. Although Ed has slowed appreciably in the subsequent decade, nonetheless in his early eighties, he still breaks world records at distances from 1500m to marathon with remarkable regularity. Undoubtedly his training regimen has combined with his apparently inherited predisposition to longevity to delay the inevitable deterioration of performance with age, whereas the effectiveness of Hosaka’s regimen beyond the mid-sixties remains un-tested . So it will be very interesting to see how well Hosaka can hold his form over the next few years, and in particular, to see whether or not he moves to lower intensity long training runs. But whatever he does, the records that Ed set in his early 70’s are going to be very hard to beat.

The training of Ed Whitlock

August 2, 2014

In a recent post I expressed my hope to run a ‘good’ marathon once again, almost half a century since I last did serious marathon training.   In that intervening half century several outstanding individuals have demonstrated that even in old age it is possible to run a marathon in a manner that would be creditable at any age.   These elite veterans include Ed Whitlock, John Keston, Derek Turnbull and Yoshihisa Hosaka. Nonetheless, despite their incredible feats, even these outstanding veteran marathoners have suffered decline with age. It is clear that outstanding performances depend on both intrinsic talent for distance running and remarkable ability to slow the progress of the inevitable age-related decline, in addition to the determination and ability to train well.

These veteran marathoners have demolished previous concepts of what training the elderly frame can withstand. While it is almost certain that genetic factors set them apart from the average person, it is worth asking if the way which they have trained has played a substantial role in their ability to slow the progress of decline, and in particular, to allow them to continue train at the level required for elite performance in old age.

All four of these elite veterans have trained in different ways, though there are common themes. In this post I will focus on the training of Whitlock, and in my next post on Hosaka, but also draw on some observations of the training of Turnbull and Keston in an attempt to tease out some of the key issues.

Ed Whitlock

Whitlock was the first person over 70 years of age to break 3 hours for the marathon with a time of 2:59:09 in the Toronto Waterfront Marathon in September 2003 at age 72.  A year later in the Waterfront Marathon he took more than 4 minutes off that time, achieving the phenomenal time of 2:54:48.   In last year’s Waterfront Marathon, he set a new world record for an 82 year old of 3:41:57.  He remains the only person over 70 to have run a marathon in less than 3 hours, ten years after achieving that feat, and therefore stands as a colossus among ancient marathoners.

To what extent can these colossal performances be attributed to intrinsic talent for distance running; to inherent ability to withstand the ravages of time; or to training?

As a school-boy, Ed ran a mile in 4:31 and on one occasion beat Gordon Pirie in a cross country race.   At that stage he was a gifted distance runner but not extraordinary. He gave up running at University due to recurrent Achilles problems but returned to track running in his early forties. In a discussion on the Let’s Run website, to which he is a frequent and gracious contributor, he reports: ‘My best marathon at age 48 was 2:31:23 at Ottawa in May 1979. This was done off a winter of quite high mileage done in preparation for middle distance track in the summer.’   After some speed work on the track during the summer, he won the M45 world masters 1500m championship in 4:09.   By that stage, it was clear that he was not only a gifted distance runner, but was also showing evidence of the ability to withstand aging.

However, it is noteworthy, that Jack Foster (discussed in my post on July 23rd) who born a year after Whitlock, ran 2:20:28 at age 50 in 1982.   The current world best for a 48 year old is 2:18:57 by Ayele Setegne of Israel, in 2011. Thus, Whitlock’s best marathon time was creditable, but not extraordinary for a 48 year old, despite the evidence that he had done both high volume training and high intensity training sufficient to take him to top place on the podium at the World Maters championship for 1500m that year. Thus, one must look for evidence that a combination of training and extraordinary resistance to aging to explain the extraordinary performances in his seventies and eighties.

In an interview for Runners World in 2005, Amby Burfoot asked Ed what he considered to be the secret of his success. Ed replied: ‘I think it’s the ability to absorb a fair amount of mileage in my training. And that’s probably genetic. I had an uncle who lived to the ripe old age of 107. The mileage I’ve done in the past few years is something I built up to gradually. I was very conscious about not making big leaps in my training. I was also conscious about keeping the speed relatively slow. I shuffle along to reduce the impact, rather than bounding. I don’t know what the relative importance of these things is, but the mileage is what has turned me into a marathoner.’

Ed almost certainly inherited some genes for longevity as not only did his uncle reach 107 but also his father lived into his eighties and his mother into her nineties.   Laboratory tests done at The High Performance Specialists clinic in North Toronto tests shortly before his 70th birthday do provide some hints concerning the inherited features that have contributed to his extraordinary running.   There was nothing remarkable in the various blood tests. The three noteworthy findings were a body fat proportion of 9.5% (about half that expected), a maximum heart rate of 168 (compared with predicted value of 151 based on the best recent estimate of the relationship between age and HRmax) and VO2max of 52.8 ml/min/Kg compared with the average of 35 for a 70 year old.

Ed’s high VO2max was extraordinary for a 70 year old, but was not extraordinary for a three hour marathoner.   The formula derived by Jack Daniels to estimate race performance based on VO2max predicts a marathon time of 3:01:00 for an athlete with VO2max of 52.8. Ed ran 3:00:33 in London, Ontario a month or so later. Thus, the task of identifying the source of Ed’s extraordinary marathon performance becomes the task of identifying the source of his high VO2max.

How much of Ed’s aerobic capacity is attributable to genes?

Can Ed’s high VO2 max can be accounted for by his high HRmax? At first sight there appears to be only a weak relationship between the variation between individuals in HRmax and variation in either VO2max or performance. This is because the delivery of oxygen to muscle cells depends not only on heart rate but also stroke volume and the ability of muscles to extract oxygen from blood, which in turn depend on capillary density, aerobic enzyme capacity and ability to recruit muscle fibres.   Variation between individuals in these various factors obscures the relationship between HRmax and performance. However, if all of these other variables are optimised by optimal training, a 10% increase in HR reserve (HR max- resting HR) would be expected to produce approximately a 10 % increase in VO2max. Since a 10% increase in HR max would usually produce at least a 10% increase in HR reserve, it is reasonable to assume that the Ed’s increase of HRmax above the average accounts for about 10% of his VO2max . Daniels’ formula indicates that a 10% increase in VO2max would account for an improvement of about 17 minutes for a 3 hour marathoner.

The mechanism that regulates decline of HRmax with age is not fully understood though it is at least partly dependent to the number of ion channels that allow the transport of calcium ions across the membranes of cardiac pacemaker cells. Much evidence indicates that HRmax is not related to training.  If anything training actually reduces HRmax a little, though cardiac output increases due to the increase in stroke volume produced by increased blood volume. Twin studies indicate that HRmax is largely determined by genetic factors.

Thus, it is very plausible that Ed’s high HRmax, likely attributable largely to his genes, contributed to a reduction of around 17 minutes in his marathon time at age 70. Without this benefit, his time in the London, Ontario marathon in 2001 might have been nearer to 3:17:23 than 3:00:23. While 3:17:23 would be outstanding for a 70 year old , it is not phenomenal.

Nonetheless to conclude simply that Ed’s phenomenal performances are due to factors such as high HRmax that are more influenced by genes than training, is to miss a crucial point.   The evidence has been discernible since the day he beat Gordon Pirie in a school-boy cross country race that he is an intrinsically gifted distance runner, and the evidence that he is aging well was already apparent when he won the M45-49 1500m at the world masters championship in Hanover in 1979.  For anyone hoping to learn from his example, the crucial issue is that he has been able to cope with the training required to optimise all those other attributes: cardiac stroke volume, and the factors that determine the ability to extract oxygen from blood, in a manner that has allowed him to exploit his gift of high HRmax to an extraordinary degree.  To what extent is the nature of his training responsible for this?

.

Ed Whitlock’s training

Ed became a good, but not exceptional, masters marathoner at age 48 by virtue of his intrinsic gifts and a training program comprising high volume in the winter and speed work in the summer. In his sixties he increased the volume of training with a focus on long slow long runs most days of the week, while reducing the speed work, largely relying on occasional fartlek session and frequent races. For example in a Runners web interview in 2003 in the week after he ran 2:59:10 in the Toroto Waterfront Marathon, his first sub 3 hour marathon at age greater than 70, he stated : ‘My training is now without coaching and consists of daily long runs, typically 2 hours I don’t measure the distance and purposely keep the speed down. I don’t have any streak going but try to run every day, no hard easy day routine. I do the odd semi “speed” work out, but not on the track. I race frequently to give me speed and to make me race tough.’  In fact, from his various posts on the Lets Run thread, it was clear than some of the long runs were actually of 3 hours duration.

Was it the introduction of almost daily long slow runs, or was it the inherited predisposition to longevity that contributed most to the transition from a ‘good’ masters marathoner at age 48 to the first (and still the only) man to run a marathon under 3 hours at age greater than 70? I think that the evidence that the long slow runs played a major part came in the Waterfront Marathon the following year (2004) when he achieved the phenomenal time of 2:54:48 at age 73.   In the intervening period, he increased the proportion of long runs of 3 hours duration.

In an interview with Scott Douglas  for Running Times he reported in the six months leading up to the Waterfront Marathon in 2004 he ran 15 races of 5K-15K and built up his long run time to three hours a day.  In a response to a question on the Let’s Run thread, he stated that in the 20 weeks prior to the 2004 Waterfront he did 67 three hour runs, including 18 on consecutive days. He trained for 15.9 hours per week.

While not conclusive proof, I think that the fact that an increase in the number of 3 hours runs was associated with an improvement of over 4 minutes from age 72 to 73 is strongly suggestive that the frequent very long runs played a key role.   There is of course no guarantee that emulating Ed’s training would allow another individual to achieve the same benefits from that training. It is far from certain that the average 70 year old could emulate his training without devastating physical breakdown.   However, few individuals have made a serious attempt to emulate Ed’s training. It would be premature to conclude that his training would not work for others before careful examination of how Ed does it.

It’s not simply a matter of high volume

From his various comments on the Let’s Run thread over the years, and from the interviews with Amby Burfoot and with Scott Douglas, there are three noteworthy features of Ed’s training apart from the mere fact that he does very long runs:

  • He builds up the duration of runs very gradually. The number of three hour runs  increased gradually over a period of 6 years from occasional three hour runs during preparation from his race in Columbic Ohio in 1998 to an average of 3.2 per week prior to the Waterfront Marathon in 2004. Furthermore, when he has to rebuild following injury, he starts with daily runs of less than an hour and increases the daily run duration gradually by 10 minutes per week.
  • He takes great care to minimise wear and tear on his legs. He trains at a slow shuffling pace designed to minimise impact forces. He does virtually all of his training on 500-600 metre loops of the level paths of Milton Evergreen Cemetery, near to his home, so that he can return home immediately if he develops an injury.
  • He sustains his speed via short distance races and occasional fartlek-style speed sessions.  It is noteworthy that during races he does not shuffle, as illustrated by this picture of him during the 2011 Longboat Toronto Island 10Km race at age 80.

In light of the evidence that high volume training is associated with harmful accumulation of cortisol and that large increases in training volume are associated with a greater risk of the over-training syndrome than increases in intensity (discussed in detail in my post on 14th April 2009) I consider that the secret to Ed’s success is the gradual build up and his care to avoid wear and tear. He trains with respect for his body.

In my previous post on July 23rd I examined the training of Haile Gebrselassie and Jack Foster, both great athletes who succeeded in maintaining world-class performances into middle age. This same theme of respect for the body emerged, though in different ways: in the case of Haile, the carefulness was deliberate; while Jack’s approach was deliberately carefree. To perform maximally over a sustained period, one must train with determination, but merely training hard is not enough.   Hard training must be accompanied by sensitivity to the body’s response.   In my next post I will examine the training of another great veteran marathoner, Yoshihisa Hosaka, whose training is radically different from that of Ed Whitlock, but in its own way, is also sensitive to the way the body is responding to training.